Glycoconj J (2012) 29:579-584
DOI 10.1007/s10719-012-9423-0

Disialyl gangliosides enhance tumor phenotypes

with differential modalities

Koichi Furukawa - Kazunori Hamamura -
Yuki Ohkawa - Yuhsuke Ohmi - Keiko Furukawa

Received: 13 June 2012 /Revised: 20 June 2012 /Accepted: 21 June 2012 /Published online: 5 July 2012

© Springer Science+Business Media, LLC 2012

Abstract Sialic acid-containing glycosphingolipids, gan-
gliosides are highly expressed in human cancer cells
and regulate cell signals transduced vie membrane
microdomains. Generally, disialyl gangliosides enhance
tumor phenotypes, while monosialyl gangliosides sup-
press them. In particular, gangliosides GD3 and GD2
are highly expressed in melanomas and small cell lung
cancer cells, and their expression cause increased cell
growth and invasion. In osteosarcomas, expression of
GD3 and GD2 also enhanced cell invasion and motility,
and caused increased phosphorylation of focal adhesion
kinase and paxillin. In addition to focal adhesion kinase,
Lyn kinase was also activated by GD3/GD2 expression,
leading to the phosphorylation of paxillin. In contrast
with melanoma cells, osteosarcomas showed reduced
cell adhesion with increased phosphorylation of paxillin.
Thus, increased expression of GD3/GD2 caused en-
hanced activation of signaling molecules, leading to
distinct phenotypes between melanomas and osteosarcomas,
i.e. increased and decreased adhesion activity. Thus, whole
features of glycolipid-enriched microdomain/rafts formed in
the individual cancer types seem to determine the main sig-
naling pathway and biological outcome.
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Introduction

It has been reported by many researchers that cancer cells
express unique carbohydrate structures in glycoproteins and
glycolipids that can not be detected in normal cells and
tissues on the cell surface membrane [1]. Since the mecha-
nisms for the synthesis of carbohydrate structures in com-
plex carbohydrates have been well understood mainly due to
the progress in the molecular cloning of glycosyltransferase
genes, it became relatively easy to understand the changes in
the whole features of glycosylation during the transforma-
tion of cells to malignant tumors. In particular, the “multi-
step oncogenesis” theory, e.g. accumulated multiple gene
alterations in the cells resulting in the evolution of cancer
[2], has prompted us to understand the phenotypes of
cancers by considering the functions of oncogenes and
suppressor genes. Accordingly, the expression and implica-
tion of carbohydrate antigens, which are characteristically
expressed in particular cancers have been analyzed in the
context of cell transformation.

We have analyzed expression and function of cancer-
associated glycosphingolipids mainly in neuroectoderm-
derived cancers and leukemia cells, and have reported that
disialyl gangliosides generally enhance tumor phenotypes
such as cell proliferation, invasion and motility [3]. On the
other hand, expression of monosialyl gangliosides such as
GM2 and GM1 tend to suppress tumor phenotypes not only
cell growth and invasion, but also metastatic potential [4, 5].
Hakomori’s group also reported that GM3 suppresses tumor
phenotypes and regulates EGF receptor-mediated signals [6,
7]. Thus, we have concluded at this moment that disialyl
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gangliosides enhance tumor phenotypes, while monosialyl
gangliosides generally suppress them [4] whatever the
mechanisms are.

Since interactions occurring on the peripheral regions
and cell surface between various stimulants and cell
receptors are direct and decisive events in the determi-
nation of cell responses and fates. Outcome of various
interactions taken place here is transmitted to cytoplas-
mic molecules and/or nuclei, and affects greatly the cell
behaviors and responses including epigenetic regulation.
In particular, carbohydrates in complex carbohydrates on
the cell membrane should function as effecter molecules
and/or parts of the effecter molecules in the responses
to the environmental changes and extrinsic stimulants to
exert fine tuning of signaling [8].

In this review, we would try to introduce recent findings
on the regulation of cell signaling by cancer-associated
glycosphingolipids with focus on the diversity in the
modes of their regulatory actions in several representative
cancers.

Disialyl ganglioside GD3 enhances cancer phenotypes of
melanoma cells

We have long analyzed functions of sialic acid-containing
glycolipids, gangliosides, mainly in malignant melanomas.
Actually, gangliosides GD3, GD2 and GM2 have been
considered to be cancer-associated antigens, and been
expected as target molecules of cancer therapeutics such as
antibody therapy [9]. Above all, we have analyzed implica-
tion of tandem-type disialyl gangliosides such as GD3 in
human melanomas by transfecting GD3 synthase cDNA
into a GD3-negative mutant of SK-MEL-28 (N1). Resultant
changes in the malignant properties and cell signaling
caused by neo-expression of GD3 have been examined.
Compared to GD3- control cells, phosphorylation levels of
adaptor molecules, p130Cas, paxillin and focal adhesion
kinase (FAK) after serum treatment were strongly enhanced
in GD3+ cells [10]. Furthermore, we reported that a Src
family kinase, Yes was definitely co-precipitated with
p130Cas or FAK, and was shown to be in an activated form
before serum stimulation in GD3+ cells [11]. Higher amount
of Yes was found in glycolipid-enriched microdomain
(GEM)/rafts in GD3+ cells than in GD3- cells even without
any stimulation. As for integrin-mediated adhesion signals,
it was demonstrated that integrin functions were strongly
enhanced as analyzed by adhesion to coated fibronectin and
collagen type I and IV [12]. As mechanisms, shifts of
integrins to GEM/rafts and the cluster formation of integrins
in GEM/rafts under GD3 expression [12] were demonstrated.
As amost important fact as a GD3 function, it was shown that
co-existence of growth factor receptor-mediated signal and
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adhesion signal are essential for the strong tyrosine
phosphorylation of p130Cas and paxillin [13]. These
results suggest that two main signaling pathways, i.e.
growth signal and adhesion signal should merge and
converge under GD3 expression, leading to the genera-
tion of much stronger signals than those derived from
either signaling pathway, forming the basis of cancer
phenotypes [14] as shown in Fig. I.

Enhancement of tumor phenotypes by disialyl
gangliosside GD2

On the other hand, it was demonstrated by us that ganglio-
side GD2 was expressed in small cell lung cancers (SCLCs)
(15), while non-small cell lung cancers (NCLCs) generally
expressed GM2. Essential difference between SCLC and
NSCLC in terms of main active glycosylation pathway
was the specific expression of GD3 synthase in SCLCs.
GD2 expression in SCLCs resulted in the increased cell
growth and invasion activity [15]. A striking difference
between GD3 in melanomas and GD2 in SCLCs was that
only anti-GD2 antibodies induced apoptosis in SCLC cells
[16]. Binding of anti-GD2 monoclonal antibodies triggered
dephosphorylation of FAK, leading to the activation of a
MAPK, p38 and finally to the induction of anoikis. More
over, addition of anti-GD2 monoclonal antibody resulted in
the increase of chemosensitivity of lung cancer cells to anti-
cancer drugs such as CDDP [17], suggesting that combina-
tion therapy of anti-GD2 antibodies and anti-cancer drugs is
promising. Delannoy et al. also demonstrated effects of
GD2 expression in human breast cancer cells on their cancer
phenotypes [18]. They showed that GD2 expression induced
tyrosine phosphorylation of HGF receptor, c-Met indepen-
dently from HGF. Only GD2, but not GD3 showed unique
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Fig. 1 Enhancement of malignant phenotypes by GD3 at cell mem-
brane of melanoma cells. High expression of GD3 results in the
enhancement of growth factor/receptor signals and adhesion signals
via clustering of integrins. Convergence of both signals by GD3
expression leads cancer phenotypes such as increased proliferation
and invasion



Glycoconj J (2012) 29:579-584

581

function in breast cancers [19]. Although a recent paper by
Battula et al. reported that GD2 is a stem cell marker in
human breast cancers [20], GD2 might not be a mere marker
of breast cancer stem cell. Potentially, GD2 should play a
crucial role in the survival and/or resistance to therapeutic
agents as suggested in the functional analyses as described
above.

Disialyl gangliosides GD3/GD2 enhance tumor
phenotypes of osteosarcoma cells by unique modalities

Effects of disialyl gangliosides on the tumor phenotypes
were further examined in osteosarcoma cells, since they
showed high expression levels of GD2 and GD3 [21]. As
reported previously, the majority of osteosarcoma cell lines
have been considered to express high levels of GD2 [22]. As
shown in melanomas, GD2/GD3 expression enhanced tu-
mor invasion and cell motility with increased activation of
either FAK or Lyn, resulting in the activation of a common
target molecule, paxillin [21] (Fig. 2). Eventually, simulta-
neous knockdown of FAK and Lyn completely suppressed
phosphorylation of paxillin and reduced cell invasion and
motility, suggesting the cooperative effects of two parallel
signaling pathways in osteosarcomas. A most distinct point
from melanoma cells was that cell growth was not affected by
the expression of disialyl gangliosides in osteosarcomas [10].

In line with this difference in the effects of ganglioside
expression on the tumor phenotypes between melanomas
and osteosarcomas, intriguing differences in the cell adhe-
sion were demonstrated. When four subtypes of an osteo-
sarcoma cell line HOS (GD3+, GD2+, GD3+/GD2+, GD2-/

GD3-) were compared about their phenotypes and signaling,
GD3+/GD2+ cells showed almost no adhesion in real-time
cell electronic sensing system [21], while these cells showed
the strongest phosphorylation of paxillin during cell “adhe-
sion”. So, the intensity in the phosphorylation and that in
cell adhesion was completely adverse. It seems slightly hard
to explain how the weakest adhesion can induce the stron-
gest activation of paxillin. Whatever the mechanisms are,
these results were quite in contrast to those in melanomas, in
which strong phosphorylation of p130Cas, paxillin and FAK
paralleled with the intensities in cell growth, invasion and
adhesion [12].

Recapitulation of the interaction between gangliosides
and signaling molecules in the reconstructed membrane-
like system

In order to investigate the mechanisms for gangliosides to
regulate cell signaling transduced via cell membrane, it
might be most straightforward to verify direct binding of
gangliosides with membrane molecules. For this purpose,
many efforts have been performed with limited success
[23]. The reason for the failure in the co-precipitation is
not known now, but the interaction might not be so strong to
be co-precipitated after solubilization, or intervening mole-
cules between them might exist. Even if direct binding
between gangliosides and membrane molecules is not veri-
fied, there are many cases where functional interactionas are
strongly suspected between them. To examine the interac-
tion between gangliosides and membrane molecules in cell
membrane, we developed a liposome system in which
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Fig. 2 Cell adhesion and signaling pathway are regulated by GD3/
GD2 expression in osteosarcoma cells. a Immunoblotting of phospho-
tyrosine with PY20 using cell lysates from four types of osteosarcoma
cell line HOS during cell adhesion. Immunoblotting with anti-paxillin
was performed as a control. b Cell adhesion patterns of individual cell

lines as measured by RT-CES (real time cell electron sensoring sys-
tem). The resistance of currency by cells was presented as Cell Index. ¢
Two major signaling pathways, i.e. FAK-paxillin and Lyn-paxillin
were defined in the osteosarcoma line based on the results of knock-
down experiments (extracted from Ref. 21)
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glycolipids and membrane proteins as well as cholesterol
and diacylglycerol were embedded [11]. In this system,
GD3 added to liposomes could enhance kinase activity of
low-active Yes isolated from GD3- cells in a dose dependent
manner (1~5 nM) as shown in Fig. 3. The effects of added
GM1 to the liposome on relatively active Yes were just
opposite, i.e. suppression of Yes kinase activity with GM1
along with its amounts was observed. Although the mecha-
nisms for the physical interaction of GD3 and Yes is not
clear now, this system seems very promising to investigate
direct and/or functional interaction between glycosphingo-
lipids and membrane proteins in the membrane-like
environments.

Regulatory mechanisms for cell signaling at GEM/rafts

All these results described as effects of disialyl gangliosides
are difficult to understand without the concept of GEM/rafts
on the cell membrane. In addition to sphingomyelin, cho-
lesterol and glycosylphosphatidylinositol (GPI)-anchored
proteins, glycosphingolipids are also major residents in
GEM/rafts. Actually, alterations in the carbohydrate moiety
of glycolipids crucially affected the architectures and func-
tions of GEM/rafts as demonstrated in a number of studies
[19]. Originally, main functions of GEM/rafts were pro-
posed to be platforms for membrane trafficking, cholesterol
metabolism and endocytosis etc. [24]. In this decade, a
number of reports on their roles in the regulation of
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Fig. 3 Regulation of Yes functions by gangliosides. a Proteolipo-
somes as a reconstruction of membrane environment were developed.
b Yes kinase was enhanced by embedded GD3 in a dose dependent
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signaling and as an initiation site for various infections have
accumulated [25]. Although there have been arguments on
the ambiguity of the concept about GEM/rafts such as
defects of visualization of molecular complex on living cell
surface [26], the substantial bases of GEM/rafts have been
gradually clarified by the progress in chemical analysis of
lipid structures and in imaging analysis of membrane mol-
ecules with very high magnification and high temporal
resolution [27]. From various evidences, it has been sug-
gested that there is compositional and functional heteroge-
neity in GEM/rafts [28] depending on the carbohydrate
structures in glycolipids, or on the GPI-anchored proteins.
Individual GEM/rafts seem to contain distinctly assembled
membrane proteins. Now, what kind of GEM/rafts exist in
one cell, remains to be investigated. Furthermore, dynamic
changes in contents and sizes of GEM/rafts are urgent
questions to be answered. Recently, Simons et al. classified
formation processes of lipid rafts into 3 phases [29], i.e.
phase 1. nanoscale assembly: resting state; phase 2, raft
platform: activated, clustered rafts; phase 3, raft phase: large
raft cluster visible under current microscope. In phase 2,
shift of proteins to GEM/rafts and their interactions with
lipids, oligomerization and activation occur. These interac-
tions between glycolipids and their ligand proteins should
generate important signals, and GEM/rafts in cancer cells
seem to already reach this phase under disialyl gangliosides
as described above. The mechanisms for disialyl ganglio-
sides to enhance tumor phenotypes by differential modali-
ties might depend on the features of GEM/rafts formed in
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Yes was, in turn, suppressed by embedded GM1. e Band intensities of
phosphorylated Yes in d were plotted (modified from Ref. 11)
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the individual cancer types. Precise differences in the com-
positions of GEM/rafts between different types of cancers
and their implication remain to be investigated in the near
future.

Ending remarks

To construct strategies to overcome cancers, we need to
further understand the mechanisms for cancer-associated
glycolipids to regulate signals leading tumor phenotypes.
In particular, the regulatory mechanisms of GEM/rafts with
aberrant architecture and abnormal functions remain to be
analyzed in the context of abnormal glycosylation. Simulta-
neously, various factors determining molecular shapes of
glycolipids and features of GEM/rafts should be considered.
For example, compositions of fatty acids in food, exposure
to UV and natural irradiation and other environmental
changes should be important. Since chemical modification
of DNA such as DNA methylation and of histone proteins
such as methylation, acetylation and phosphorylation have
been demonstrated to be involved in the regulation of gene
expression, and the chemical modification due to the extrin-
sic factors have been reported to be inherited to daughter
cells [30], epigenetic regulation of molecules involved in the
glycosylation machineries during receipt of extrinsic stimu-
lants remain to be investigated.
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